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ABSTRACT

A regulator circuit includes: a current detector configured to
sense a load current and convert the sensed load current to
a DC current sense signal; and an adjustment circuit con-
figured to adjust an output voltage within predetermined
upper and lower voltage limits based on the DC current
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1
SELF-ADAPTIVE VOLTAGE SCALING

CROSS-REFERENCE TO RELATED
APPLICATION(S)

This application claims the benefit of U.S. Provisional
Application No. 61/904,423 filed Nov. 14, 2013, the disclo-
sure of which is hereby incorporated in its entirety by
reference.

BACKGROUND

1. Technical Field

Apparatuses and methods consistent with the present
inventive concept relate to power supplies, and more par-
ticularly to self-adaptive voltage scaling for power supply
regulation.

2. Related Art

A System-On-Chip (SOC) may provide the components
necessary to control operation of a storage device, for
example, a hard disk drive, a hybrid hard drive, etc. The
SOC may have different operational modes, for example, an
idle mode during which the SOC consumes a least amount
of power and an active mode during which the SOC con-
sumes significantly more power than the idle mode.

BRIEF DESCRIPTION OF THE DRAWINGS

Aspects and features of the present inventive concept will
be more apparent by describing example embodiments with
reference to the accompanying drawings, in which:

FIG. 1 is a block diagram illustrating a power system
according to example embodiments of the present inventive
concept;

FIG. 2 is a graph illustrating an output voltage response
to a load for a conventional regulated power supply;

FIG. 3 is a circuit diagram illustrating a regulator circuit
according to example embodiments of the present inventive
concept;

FIG. 4 is a block diagram illustrating a logic circuit
according to example embodiments of the present inventive
concept;

FIG. 5 is a graph illustrating an output voltage response
to a load for a regulated power supply in a self-adaptive
voltage scaling mode according to example embodiments of
the present inventive concept;

FIG. 6 is a circuit diagram illustrating a regulator circuit
according to example embodiments of the present inventive
concept;

FIG. 7 is a flow chart illustrating a method according to
example embodiments of the present inventive concept; and

FIG. 8 is a flow chart illustrating another method accord-
ing to example embodiments of the present inventive con-
cept.

DETAILED DESCRIPTION

While certain embodiments are described, these embodi-
ments are presented by way of example only, and are not
intended to limit the scope of protection. The methods and
systems described herein may be embodied in a variety of
other forms. Furthermore, various omissions, substitutions,
and changes in the form of the example methods and
systems described herein may be made without departing
from the scope of protection.
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2

Overview

During the active mode of the SOC, SOC operation can
cause high power supply loads and large load steps. Power
supply regulators must be designed to handle maximum
output current, for example, 2 amps (A) as well as sudden
load increases, for example, a load step from 200 mA to 2
A (i.e., a load step of 1.8 A) within microseconds, while
maintaining the output voltage within upper and lower
specification limits.

However, the storage device may be operating in idle
mode at low current for an extended period of time. If the
power supply regulator output voltage is set to handle a large
current step while staying within specification during a load
step, but the load step does not happen for a long time, power
is wasted.

FIG. 1 is a block diagram illustrating a power system
according to example embodiments of the present inventive
concept. Referring to FIG. 1, a power integrated circuit (IC)
110 may include one or more regulators 140a-140c to
provide regulated output voltages and/or currents. One or
more regulated output voltages may be supplied to various
devices, i.e., loads, for example, but not limited to, an SOC
120, a memory 130, etc. Each load may have voltage and
current requirements that a regulator 140a-140¢ maintains
within predetermined upper and lower limits.

FIG. 2 is a graph illustrating an output voltage response
to an SOC load for a conventional regulated power supply.
As illustrated in FIG. 2, a power supply regulator provides
an output voltage 200 between an upper voltage limit 210
and a lower voltage limit 215. With the storage device
operating in idle mode for an extended period of time, the
SOC may require only a low operating current 220, for
example, about 200 mA, and the power supply regulator
operates to maintain a specified output voltage 205.

However, a transition of the storage device to an active
mode may result in a step 225 in load current, for example,
up to 2 A 230, by the SOC. As a result of the step 225 in load
current, the specified output voltage 205 may drop 235 and
then achieve a steady state voltage 240 lower than the
specified output voltage 205 during idle mode operation.
Similarly, when the storage device returns to idle mode
operation, the load current requirement of the SOC drops
245 causing a large spike 250 in the output voltage 200
before the output voltage achieve a steady state 255.

Some embodiments of the present inventive concept
provide apparatuses and methods for self-adaptive voltage
scaling for power supply regulation.

Regulator Circuit

FIG. 3 is a circuit diagram illustrating a regulator circuit
according to example embodiments of the present inventive
concept. The regulator circuit 300 may include a switching
circuit 305, a current detector 315, a logic circuit 320, a
digital-to-analog converter (DAC) 330, and an adjustment
circuit 340.

The switching circuit 305 may be configured to generate
a duty cycle to regulate an output voltage 390. The current
detector 315 may be configured to sense a load current 325
and convert the sensed load current to a DC current sense
signal 317. The DC current sense signal 317 may be a
voltage signal.

The adjustment circuit 340 may include a logic circuit
320, and a digital-to-analog converter (DAC) 330. The logic
circuit 320 may be configured to input the DC current sense
signal 317 and generate an adjustment signal 322 based on
the DC current sense signal 317. The DAC 330 may be
configured to input the adjustment signal 322 and generate
an output voltage control signal 332 based on the adjustment
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signal 322. If the DC current sense signal 317 is increasing,
the output voltage control signal 332 may provide an
increasing feedback voltage to the switching circuit 305 that
is proportional to the increasing load current 325. If the DC
current sense signal 317 is decreasing, the output voltage
control signal 332 may provide a decreasing feedback
voltage to the switching circuit 305 that is proportional to the
decreasing load current 325.

The output voltage control signal 332 generated by the
DAC 330 may cause the output voltage 390 to increase or
decrease within predetermined upper and lower limits. In
various embodiments, the output voltage 390 may be
adjusted within the predetermined upper and lower voltage
limits proportionally to changes in the DC current sense
signal 317.

FIG. 4 is a block diagram illustrating a logic circuit
according to example embodiments of the present inventive
concept. Referring to FIGS. 3 and 4, the logic circuit 320
may include an analog-to-digital converter (ADC) 421, a
digital controller 423, a serial port register 425, and a switch
427.

The ADC 421 may be configured to input the DC current
sense signal 317 and based on the DC current sense signal
317 generate an ADC output signal 424 to the digital
controller 423. The serial port register 425 may be user-
programmable. Upper and lower output voltage limits may
be programmed in the serial port register 425. The serial port
register 425 may be configured to generate a register output
signal 426 to the digital controller 423 indicating the pre-
determined upper and lower output voltage limits. The serial
port register 425 may be further configured to generate a first
DAC setting signal 429.

The digital controller 423 may be configured to input the
ADC output signal 424 from the ADC 421 and the register
output signal 426 from the serial port register 425 and based
on those signals determine a setting for the DAC 330 and
output a second DAC setting signal 428.

The switch 427 may be configured to select a first position
“A” or to a second position “B”. With the switch 427 in
position “A”, the first DAC setting signal 429 from the serial
port register 425 may be output from the logic circuit as the
adjustment signal 322 to the DAC 330.

With the switch 427 in position “B”, the regulator circuit
300 may be in a self-adaptive voltage scaling mode accord-
ing to various embodiments, and the second DAC setting
signal 428 from the digital controller may be output from the
logic circuit 320 as the adjustment signal 322 to the DAC
330.

In various embodiments, the adjustment circuit 340 may
be configured to adjust the output voltage 390 to a prede-
termined minimum output voltage in response to a value of
the DC current sense signal 317 less than a threshold value,
and to adjust the output voltage 390 higher than the prede-
termined minimum output voltage in response to a value of
the DC current sense signal 317 equal to or greater than the
threshold value.

FIG. 5 is a graph illustrating an output voltage response
to a load for a regulated power supply operating in a
self-adaptive voltage scaling mode according to example
embodiments of the present inventive concept. FIG. 5 shows
the output voltage 390 response to changes in the DC current
sense signal 317 resulting from changes in the load current
325. Referring to FIGS. 3-5, a regulator circuit 300 operat-
ing in a self-adaptive voltage scaling mode may operate to
maintain an output voltage 390 between a predetermined
upper voltage limit 510 and a predetermined lower voltage
limit 515. For a low load current 325, for example, about 200
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mA, the value 520 of the DC current sense signal 317 may
be less than a predetermined threshold value 525.

In response to a value of the DC current sense signal 317
less than the predetermined threshold value 525, the regu-
lator circuit 300 may adjust the output voltage 390 to a
predetermined minimum output voltage 530. When the load
current 325 increases, the value of the DC current sense
signal 317 may increase to a value 535 equal to or greater
than the predetermined threshold value 525. In response, the
regulator circuit 300 may adjust the output voltage 390 to a
value 540 higher than the predetermined minimum output
voltage 530. Similarly, when the load current 325 again
decreases, the value of the DC current sense signal 317 may
decrease to a value 545 below the predetermined threshold
value 525, the regulator circuit 300 may adjust the output
voltage 390 back to the predetermined minimum output
voltage 530.

It should also be noted that for step increases and
decreases in load current 325, output voltage 390 undershoot
550 and overshoot 555 may be reduced for the regulator
circuit 300 operating in a self-adaptive voltage scaling mode
according to various embodiments as compared to conven-
tional regulator circuit operation.

FIG. 6 is a circuit diagram illustrating a regulator circuit
according to example embodiments of the present inventive
concept. The regulator circuit 600 may include a switching
circuit 305, a logic circuit 320, a digital-to-analog converter
(DAC) 330, an adjustment circuit 340, and an amplifier 610.

The switching circuit 305, logic circuit 320, DAC 330,
and adjustment circuit 340 operate as described with respect
to FIG. 3 and their operation will not be further explained
here.

The amplifier 610 may be configured to sense a voltage
drop across a first resistive element 620 resulting from a load
current 625 flowing through the first resistive element 620.
The first resistive element 620 may be, for example, but not
limited to, one or more fixed or trimmable resistors, or other
resistive device producing a voltage drop proportional to
current through the device.

The amplifier 610 may be configured to convert the
sensed load current 625 to a DC current sense signal 617.
The DC current sense signal 617. may be a voltage signal.
The DC current sense signal 617 may be input to the logic
circuit 320 in the adjustment circuit 340, and operation of
the regulator circuit 600 may be as explained with respect to
FIGS. 3 and 5, where the DC current sense signal 617 from
the amplifier 610 may be input to the logic circuit 320 in
place of the DC current sense signal 317 from the current
detector 315.

FIG. 7 is a flow chart illustrating a method according to
example embodiments of the present inventive concept.
Referring to FIGS. 3-7, the upper and lower output voltage
limits may be set by programming the serial port register
425. The serial port register 425 may be configured to
generate a register output signal 426 to the digital controller
423 indicating the predetermined upper and lower output
voltage limits (710).

In some embodiments, load current 325 may be moni-
tored using a current detector 315 that may be configured to
sense the load current 325 and convert the sensed load
current to a DC current sense signal 317 (720). In some
embodiments, load current 625 may be monitored using an
amplifier 610 that may be configured to sense a voltage drop
across a first resistive element 620 resulting from the load
current 625 flowing through a first resistive element 620 and
generate a DC current sense signal 617 (720).
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If the load current 325, 625 is increasing (730), the DAC
330 may generate an output voltage control signal 332 to
increase feedback voltage to the switching circuit 305 (740).
The logic circuit 320 may generate an adjustment signal 322
to the DAC 330 based on the DC current sense signal 317,
617 to generate an increasing feedback voltage to the
switching circuit 305 that is proportional to the increasing
load current 325, 625.

If the load current 325, 625 is decreasing (750), the DAC
330 may generate an output voltage control signal 332 to
decrease feedback voltage to the switching circuit 305 (760).
The logic circuit 320 may generate an adjustment signal 322
to the DAC 330 based on the DC current sense signal 317,
617 to generate a decreasing feedback voltage proportional
to the decreasing load current 325, 625.

FIG. 8 is a flow chart illustrating another method accord-
ing to example embodiments of the present inventive con-
cept. Referring to FIGS. 3-8, in some embodiments, load
current may be sensed using a current detector 315 that may
be configured to sense a load current 325 and convert the
sensed load current to a DC current sense signal 317 (810).
In some embodiments, load current may be sensed using an
amplifier 610 that may be configured to sense a voltage drop
across a first resistive element 620 resulting from the load
current 625 flowing through a first resistive element 620 and
generate a DC current sense signal 617.

The DC current sense signal 317, 617 may be input to a
logic circuit 320 in an adjustment circuit 340, and the logic
circuit 320 may generate an adjustment signal 322 based on
the DC current sense signal 317, 617 (820).

The adjustment signal 322 may be input to a DAC 330,
and based on the adjustment signal 322 the DAC 330 may
generate an output voltage control signal 332 (830). The
output voltage control signal 332 generated by the DAC 330
may cause the output voltage 390, 690 to increase or
decrease within predetermined upper and lower limits (840).
In various embodiments, the output voltage 390, 690 may be
adjusted within the predetermined upper and lower voltage
limits proportionally to changes in the DC current sense
signal 317.

The output voltage 390, 690 may be adjusted to a prede-
termined minimum output voltage in response to a value of
the sensed load current 325, 625 less than a threshold value,
and the output voltage 390, 690 may be adjusted higher than
a predetermined minimum output voltage in response to the
value of the sensed load current 325, 625 equal to or greater
than a threshold value.

While certain embodiments have been described, these
embodiments have been presented by way of example only,
and are not intended to limit the scope of the protection. The
methods and systems described herein may be embodied in
a variety of other forms. Various omissions, substitutions,
and/or changes in the form of the example methods and
systems described herein may be made without departing
from the spirit of the protection.

The accompanying claims and their equivalents are
intended to cover such forms or modifications as would fall
within the scope and spirit of the protection. For example,
the example systems and methods disclosed herein can be
applied to hard disk drives, hybrid hard drives, and the like.
As another example, the various components illustrated in
the figures may be implemented as software and/or firmware
on a processor, ASIC/FPGA, or dedicated hardware. Also,
the features and attributes of the specific example embodi-
ments disclosed above may be combined in different ways to
form additional embodiments, all of which fall within the
scope of the present disclosure.
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Although the present disclosure provides certain example
embodiments and applications, other embodiments that are
apparent to those of ordinary skill in the art, including
embodiments which do not provide all of the features and
advantages set forth herein, are also within the scope of this
disclosure. Accordingly, the scope of the present disclosure
is intended to be defined only by reference to the appended
claims.

What is claimed is:

1. A regulator circuit, comprising:

a current detector configured to sense a load current and
convert the sensed load current to a DC current sense
signal; and

an adjustment circuit comprising:

a logic circuit configured to input the DC current sense
signal and generate an adjustment signal based on
the DC current sense signal; and

a digital-to-analog converter configured to input the
adjustment signal and generate an output voltage
control signal based on the adjustment signal,

wherein the adjustment circuit is configured to adjust an
output voltage within predetermined upper and lower
voltage limits based on the DC current sense signal, and

wherein the output voltage control signal causes the
output voltage to increase or decrease within the pre-
determined upper and lower voltage limits.

2. The regulator circuit of claim 1, wherein DC current
sense signal is a voltage signal.

3. The regulator circuit of claim 1, wherein in response to
a value of the DC current sense signal equal to or greater
than a threshold value, the adjustment circuit is further
configured to adjust the output voltage higher than a prede-
termined minimum output voltage.

4. The regulator circuit of claim 1, wherein the adjustment
circuit is further configured to increase and decrease the
output voltage control signal proportionally to changes in
the DC current sense signal.

5. The regulator circuit of claim 1, wherein in response to
a value of the DC current sense signal less than a threshold
value, the adjustment circuit is further configured to adjust
the output voltage to a predetermined minimum output
voltage.

6. A regulator circuit, comprising:

a first resistive element configured to sense a load current;

an amplifier configured to convert the sensed load current
to a DC current sense signal; and

an adjustment circuit comprising:

a logic circuit configured to input the DC current sense
signal and generate an adjustment signal based on
the DC current sense signal; and

a digital-to-analog converter configured to input the
adjustment signal and generate an output voltage
control signal based on the adjustment signal,

wherein the adjustment circuit is configured to adjust an
output voltage within predetermined upper and lower
voltage limits based on the DC current sense signal, and

wherein the output voltage control signal causes the
output voltage to increase and decrease within the
predetermined upper and lower voltage limits.

7. The regulator circuit of claim 6, wherein in response to
a value of the DC current sense signal equal to or greater
than a threshold value, the adjustment circuit is further
configured to adjust the output voltage higher than a prede-
termined minimum output voltage.

8. The regulator circuit of claim 6, wherein DC current
sense signal is a voltage signal.
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9. The regulator circuit of claim 6, wherein in response to
a value of the DC current sense signal less than a threshold
value, the adjustment circuit is further configured to adjust
the output voltage to a predetermined minimum output
voltage.

10. The regulator circuit of claim 6, wherein the adjust-
ment circuit is further configured to increase and decrease
the output voltage control signal proportionally to changes
in the DC current sense signal.

11. A method for regulating a voltage, the method com-
prising:

sensing a load current;

converting the sensed load current to a DC current sense

signal;

generating a digital adjustment signal based on the DC

current sense signal;

generating an analog output voltage control signal based

on the adjustment signal; and
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adjusting the output voltage within predetermined upper
and lower voltage limits with the output voltage control
signal,

wherein the output voltage control signal causes the

output voltage to increase or decrease within the pre-
determined upper and lower voltage limits.

12. The method of claim 11, further comprising increasing
and decreasing the output voltage control signal proportion-
ally to changes in a DC current sense signal.

13. The method of claim 11, further comprising adjusting
the output voltage to a predetermined minimum output
voltage in response to a value of the sensed load current less
than a threshold value.

14. The method of claim 11, further comprising adjusting
the output voltage higher than a predetermined minimum
output voltage in response to the value of the sensed load
current equal to or greater than a threshold value.
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